Refine Your Search

Topic

Search Results

Standard

Magnesium Alloys in Aircraft Seats - Developments in Magnesium Alloy Flammability Testing

2020-01-09
CURRENT
AIR6160A
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
Standard

Magnesium Alloys in Aircraft Seats - Developments in Magnesium Alloy Flammability Testing

2014-05-16
HISTORICAL
AIR6160
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
Standard

Method to Evaluate Aircraft Passenger Seats for the Test Requirements of 14 CFR Part 25 Appendix F, Parts IV and V

2017-02-02
HISTORICAL
ARP6199A
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR part 25 Transport Airplane passenger seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR part 25 Appendix F, Parts IV and V. Such materials are referred to as Heat Release Special Conditions (HRSC) compliant]. Additionally, it is recommended to use HRSC compliant materials in applications where not required. Independent furniture related to seat installations is outside the scope of this document.
Standard

Method to Evaluate Passenger and Flight Attendant Seats for the Test Requirements of 14 CFR Part 25 Appendix F, Parts IV and V

2022-02-14
CURRENT
ARP6199B
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR Part 25 transport airplane passenger and flight attendant seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR Part 25 Appendix F, Parts IV and V. Additionally, it is recommended to use materials that meets the requirements of 14 CFR Part 25 Appendix F, Parts IV and V in applications where not required. Independent furniture installations related to seat installations are outside the scope of this document.
Standard

Methods for Determining the Effect of Liquid Disinfectants on Seats in Transport Aircraft

2022-03-02
CURRENT
ARP8463
This SAE Aerospace Recommended Practice (ARP) defines acceptable methods for determining the effect of disinfectants application to passenger and crew seating products in transport aircraft. This ARP selected a standard application process for all disinfectants in order to remove one variable from the investigation, which, at the time, was more concerned with the unknown effect of disinfectant chemicals on seat materials. The SAE Aircraft Seat Committee noted that most disinfectant manufacturers have their own application regimens to ensure the effectiveness of their product and that these differ from those defined in the ARP. Consequently, the standard application methodology defined in the ARP is not suitable for qualifying disinfectants, but is rather a standard method to compare the disinfectant’s behavior across a range of seat materials. Acceptance of individual disinfectants for specific application regimens is outside the scope of this ARP.
Standard

Methods to Evaluate Impact Characteristics of Seat Back Mounted IFE Monitors

2023-12-06
WIP
ARP6330A
This SAE Aerospace Recommended Practice (ARP) defines means to assess the effect of changes to seat back mounted IFE monitors on blunt trauma to the head and post-impact sharp edges. The assessment methods described may be used for evaluation of changes to seat back monitor delethalization (blunt trauma and post-test sharp edges) and head injury criterion (HIC) attributes (refer to ARP6448 Appendix A Items 3 and 6, respectively). Application is focused on type A-T (transport airplane) certified seat installations.
Standard

Modification or Replacement of Components on Dynamically Certified Seat Systems

2018-02-06
CURRENT
ARP5497A
This document outlines the engineering evaluation appropriate for modifying or replacing components of a previously certified seat when the certification process is based on qualification to the requirements of AS8049, which includes dynamic testing. The engineering evaluation presented in this document may be used to determine if a modification (including replacement of a component) is a minor change with respect to meeting the dynamic testing requirements described in AS8049. Whenever a modification is considered, the ability to meet all requirements of the applicable Federal Aviation Regulation (FAR) must be verified. For example, this would include the capability to meet requirements such as flammability and flotation. Analysis and/or test data supporting the ability of the new materials and/or configuration to meet the applicable requirements must be submitted with the change documentation.
Standard

Modification or Replacement of Components on Dynamically Certified Seat Systems

2001-10-01
HISTORICAL
ARP5497
This document outlines the engineering evaluation appropriate for modifying or replacing components of a previously certified seat when the certification process is based on qualification to the requirements of AS8049, which includes dynamic testing. The engineering evaluation presented in this document may be used to determine if a modification (including replacement of a component) is a minor change with respect to meeting the dynamic testing requirements described in AS8049. Whenever a modification is considered, the ability to meet all requirements of the applicable Federal Aviation Regulation (FAR) must be verified. For example, this would include the capability to meet requirements such as flammability and flotation. Analysis and/or test data supporting the ability of the new materials and/or configuration to meet the applicable requirements must be submitted with the change documentation.
Standard

PASSENGER SEAT DESIGN COMMERCIAL TRANSPORT AIRCRAFT

1987-11-19
HISTORICAL
ARP750B
In addition to those aspects of a passenger seat as comfort and appearance, the passenger seat, whether aft, forward or side facing, is the basic link that supports and ties the occupant to the aircraft structure. It is essential that the support and tie down functions be accomplished in a manner that will provide maximum safety during all normal conditions of flight, emergency flight maneuvers and crash landings, whether on land or water, and that these functions are not compromised to attain the comfort and appearance features.
Standard

Performance Standard for Child Restraint Systems in Transport Category Airplanes

2019-10-31
CURRENT
AS5276/1
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
Standard

Performance Standard for Seat Furnishings in Transport Aircraft

2021-03-22
CURRENT
AS6960
Seat furnishings are installed around seats and are intended to enhance passenger privacy and comfort. They may have provisions for additional occupants to be seated when the aircraft is in-flight, but would not be occupied during taxi, take-off, and landing (TTL). This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for seat furnishings with and without upper attachments (see Figures 1 and 2) to be installed in large transport category airplanes. This standard excludes seat furnishing designs that are directly attached to the seat assembly, for which AS8049 is the applicable standard. Integrated items (desk tops, cabinets, shelves, stowage areas, closeouts, dividers, etc.) connected to seat furnishings shall comply with the requirements of this AS as part of the seat furnishings.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

1997-09-01
HISTORICAL
AS8049A
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR Part 23, Part 25, Part 27, or Part 29. This document also provides guidance for design by enumerating certain design goals to enhance comfort, serviceability, and safety. Guidance for test procedures, measurements, equipment, and interpretation of results is presented to promote uniform techniques and to achieve acceptable data.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2005-01-25
HISTORICAL
AS8049B
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2021-01-05
WIP
AS8049E
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2015-08-14
HISTORICAL
AS8049C
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2020-11-02
CURRENT
AS8049D
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standards for Oblique Facing Passenger Seats in Transport Aircraft

2023-10-26
CURRENT
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
Standard

Performance Standards for Passenger and Crew Seats in Advanced Air Mobility (AAM) Aircraft

2022-10-07
CURRENT
AS6849
This SAE Aerospace Standard (AS) defines qualification requirements, and minimum documentation requirements for forward and aft facing seats in Advanced Air Mobility aircraft. The goal is to achieve occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when the seat is subjected to statically applied ultimate loads and to dynamic test conditions. While this document addresses system performance, responsibility for the seating system is divided between the seat manufacturer and the installation applicant. The seat manufacturer’s responsibility consists of meeting all the seat system performance requirements. The installation applicant has the ultimate system responsibility in assuring that all requirements for safe seat installation have been met. This AS is dependent on AS8049D and cannot be used without it.
X